← 4-3
4-5 →
quantum mechanics
4-4. 簡単な固有値方程式を解く
量子力学 - 太田 雅久
固有値方程式を解く練習をしましょう。
「演算子L

数式

で与えられている。このとき、数式という固有値方程式を数式の区間で、数式という境界条件のもとで解きなさい。」
というのが典型的な問題の言いまわしです。

ここで区間がどのようになっていて、どんな境界条件であるのかをしっかりと認識しなければなりません。このケースでは、後は微分方程式を解くだけとなります。Lを具体的な形で示すと、方程式は

数式

となります。

数式

として両辺を積分すると、

数式

従って、数式Aとおいて

数式

ここで気にとめることは、λが決まっていないということです。このλは境界条件により決まります。つまり、固有値λは境界条件から決まるということです。

数式

ですから、

数式

つまり

数式

ということは、指数関数のベキにある位相部分数式が、数式ということになります。

数式

これで固有値(とびとびの値、つまり、離散的な値)が決まり、波動関数は定数因子Aを除いて決まりました。
定数因子Aは通常は気にしませんが、規格化することによって一意的に決めることができます。しかし数式のみが決まるだけで、位相因子まで決めることはできません。

← 4-3
4-5 →